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Abstract

Signal conditioning aids clinical diagnosis

by improving the quality of vital sign metrics,  

as well as enhancing the performance when 

deployed on Holters, patches, and wearables.

This study evaluates the performance of the FDA 

510(k) cleared HeartKey® Signal Conditioning and 

QRS peak detection algorithms on a range of 

annotated public and proprietary EKG databases.1 

To confirm the universal performance of B-Secur’s 

HeartKey Signal Conditioning technology,

the datasets were specifically chosen to

ensure a challenging variation of real-world 

representative EKG data, including data from 

healthy and unhealthy patients, wet and dry 

electrode types, various lead configurations, 

hardware sources, and stationary/ ambulatory 

recordings from clinical and non-clinical settings.

A total of 751 raw EKG files from a broad range

of use cases were individually processed through 

the HeartKey Signal Conditioning algorithm. The 

algorithm includes several advanced filtering steps 

to enable significant noise removal and accurate 

identification of the QRS complex. QRS detection 

statistics were generated against the annotated 

EKG files. 

HeartKey displayed robust performance across 14 

EKG databases (7 public, 7 proprietary), covering 

a range of healthy and unhealthy patient data, 

collected with both wet and dry electrodes over 

multiple lead setups. Over the NSR, MIT-BIH, 

AHA, and MIT-AF public databases, average QRS 

sensitivity (Se) and positive predictive values (PPV) 

of 98.90% and 99.08% were achieved. A similar 

adaptable performance was observed on noisy 

Electrocardiogram (EKG) signal 
conditioning is a vital component 
in the EKG signal processing chain 
that ensures effective noise removal 
and accurate feature extraction.

14
EKG DATABASES 
(7 PUBLIC, 7 PROPRIETARY)

751
RAW EKG FILES 
PROCESSED

3,135,366
ANNOTATED BEATS 
ANALYZED
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EKG data, with a QRS Se of 93.26% and PPV of 

90.53% attained on the challenging NST database. 

Crucially, HeartKey’s performance also translated to 

the dry electrode space, with an average of 99.22% 

QRS Se and 99.00% PPV observed on eight dry 

electrode datasets collected on various hardware 

sources, including two challenging motion-based 

collection protocols.

HeartKey demonstrates robust signal conditioning 

and QRS detection performance across the 

broad range of tested EKG signals. It should be 

emphasized that in no way have the algorithms 

been altered or trained to optimize performance 

on a given database, meaning that HeartKey is a 

potential universal solution capable of maintaining a 

high level of performance across a broad range of 

clinical and everyday use cases.
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Introduction

Early detection and monitoring of CVDs 
is crucial as it allows the identified 
conditions to be treated and appropriate 
medical precautions to be established.

Due to the wealth of physiological information 

derived from the heart’s electrical signal, 

electrocardiography is among the most effective 

diagnostic tools available to aid clinicians in the 

fight against CVD. Although once restricted to 

clinical settings, integrating EKG functionality into 

portable devices allows healthcare professionals 

to continuously monitor cardiac function remotely 

over extended periods. The ambulatory approach 

is compelling and is becoming increasingly valuable 

in diagnosing and managing cardiac arrhythmias, 

including atrial fibrillation (AF), which manifest 

infrequently and inconsistently.3 

Being able to accurately extract the relevant 

physiological information from patients amidst 

the background noise of a non-clinical, unstable 

environment is vital to ensure no further increases 

in burden to the clinical pathway.

Electrocardiogram (EKG) signals are characterized 

by five key features (P, Q, R, S and T waves) 

pertaining to the direction of electrical signal 

propagation through the heart at various stages 

of the cardiac cycle (Figure 1). Variations in 

characteristic waveform morphology, orientation 

and frequency can indicate various cardiac 

conditions, such as arrhythmias and ischemic 

heart disease, among others. Computer-aided 

EKG algorithms that process, interpret and 

autonomously diagnose cardiac abnormalities 

have emerged as powerful tools to support manual 

diagnosis by specialists. 

The QRS complex, which represents ventricular 

depolarization, is the most prominent waveform in 

the EKG and the easiest for algorithms to detect 

due to its high amplitude.4 Accurate and reliable 

algorithmic detection of the QRS complex is 

crucial.  It serves as the basis from which: a) other 

characteristic waveforms (P & T waves) in the 

EKG can be identified, and b) critical diagnostic 

parameters can be derived. The efficient and 

accurate extraction of the latter is essential as such 

information acts as the foundation from which 

more complex algorithms can be constructed. 

Cardiovascular Disease (CVD), an 
umbrella term encompassing an array 
of disorders affecting the heart and 
blood vessels, is the leading cause 
of death worldwide and a significant 
burden on global healthcare.2 
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For instance, beat to beat (R-R) intervals are 

obtained by measuring the time between correctly 

detected QRS signals and can be used to calculate 

heart rate (HR), heart rate variability (HRV) and act 

as an input for Arrhythmia Detection algorithms.

Although clinical recording protocols are 

standardized, QRS signal morphology can vary 

significantly from patient to patient.5,6 To maximize 

compatibility with QRS detection algorithms, 

minimizing noise contamination on the EKG signal 

is essential as it allows the QRS complex to be 

readily distinguished. Noise contamination can arise 

from various sources, including 50/60 Hz power line 

interference, the electrode-skin interface, muscle 

activity, and general motion artefact noise induced 

by patient movement. In the context of automatic 

EKG detection algorithms, noise artefacts are 

especially problematic as they can trigger false-

positive events that obscure valid EKG metrics. 

As automated detection algorithms become 

more common, there is a clear need to input 

high-quality data to ensure they function to a high 

performance level. This need is exacerbated in 

ambulatory monitoring applications, as the levels 

of noise artefacts produced during daily activities 

are significantly greater than in a hospital setting.7 

Effective signal conditioning algorithms must be 

carefully designed to ensure that; a) noise artefacts 

are not falsely classified as QRS complexes, and 

b) true QRS complexes are not removed alongside 

noise during filtering steps. Noise artefacts can 

obstruct the distinction of true QRS complexes, 

potentially leading to the missed detection of an 

important pathological event that can delay or 

prevent the diagnosis of a cardiac abnormality. 

Therefore, an effective signal conditioning step 

must follow the acquisition of raw EKG data to 

remove excess noise and output EKG signals from 

which the QRS can be correctly identified, and 

critical diagnostic parameters obtained.

Despite the plethora of QRS detection algorithms 

introduced over the past few decades, there still 

lacks a universal algorithm capable of operating 

with high accuracy across the wide range of 

clinically relevant use cases. In this study, we 

introduce the HeartKey® Signal Conditioning 

and QRS Detection algorithms and evaluate their 

performance on a total of 14 EKG databases, 

chosen to represent the inevitable variability in 

signal quality of real-world EKG data. 

Across the broad range of use cases, 3,135,366 

annotated beats were analyzed in total. HeartKey 

demonstrated highly adaptable QRS detection 

accuracy and positive predictivity in all cases. 

Due to the low memory footprint and processing 

requirements of the algorithm, it has the potential 

to be employed in a host of EKG monitoring 

applications, both inside and outside of a 

clinical environment.

Figure 1. Example EKG waveform highlighting key features
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Methods

HeartKey QRS Detection and Heart Rate algorithms 

are FDA 510(k) cleared as a Class II medical device. 

Operationally, the algorithms consist of several 

distinct stages, detailed in Figure 2, designed 

to produce reliable and robust performance 

from raw EKG data across a range of EKG lead 

configurations and hardware sources. The input 

signal is initially processed through a signal 

filtering step that has been fine-tuned to operate 

on signals from various electrode materials and 

hardware sources. This ensures that the variation 

in signal quality associated with both methods is 

adequately dealt with and that the information to 

be extracted from the processed data is accurate, 

reliable, and therefore valuable at a clinical level. 

After filtering, a clean signal is fed through the QRS 

detection algorithm. Upon successful identification 

of the QRS locations, an R-R interval series can be 

calculated. This feeds into, amongst others, the HR 

algorithm. Throughout the process, the HeartKey 

algorithms employ a variety of methods to assess 

each calculated metric for validity; this ensures 

robustness and accuracy on even the noisiest of 

signals. The HeartKey algorithms will also assess 

and provide an indicator of the EKG signal quality, 

only outputting a HR value if the signal is deemed 

to be of sufficient quality.

HeartKey Algorithm Overview

Input
EKG

Signal
Filtering

QRS
Detection

R-R
Intervals

Heart
Rate

Heart Rate
Output

RR
Series HR

QRS
Locations

Filtered
EKG

Raw
EKG

Signal
Quality

Filtered
EKG

RR
Series

QRS
Locations

Signal
Quality State

Figure 2. The flow of EKG data through HeartKey algorithm(s).
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Five public PhysioNet wet electrode databases 

were chosen to evaluate the performance of 

HeartKey QRS Detection and Signal Conditioning 

algorithms: the NSR database, the MIT-BIH 

database, the MIT-AF database, the AHA database, 

and the NST database.8 The respective databases 

include 179 raw EKG files, 3,086,647 annotated 

beats, with a variety of healthy and unhealthy 

patients and EKG morphologies on both clean 

and noisy signals. The databases were tested 

in line with the AAMI/ANSI EC57 standard 9 – a 

medical standard that pertains to a “protocol for 

a reproducible test with clinical requirements and 

emphasizes the record-by-record presentation of 

results; that reflect an algorithm’s ability to detect 

events of clinical significance.” Proprietary wet-

electrode data was also collected on an industry 

gold standard ambulatory device (Bittium Faros 

180)10 using a wet electrode lead II configuration.

Wet Electrode EKG Data Overview

To demonstrate the applicability of the HeartKey 

Signal Conditioning and QRS Detection algorithms 

for integration into the ever-increasing range of 

EKG-functionalised dry electrode hardware, EKG 

data originating from a variety of devices and 

challenging collection protocols, including walking, 

and running, were used. A database of proprietary 

dry electrode data was designed to validate QRS 

detection performance on challenging EKG data. 

This database represents EKG data collected 

from real world use, where EKGs are performed 

in various settings, through various methods, by 

various operators, which ultimately results in a 

significant variation of signal quality. Challenging 

signals in the database include those with a 

significant degree of high frequency noise, motion 

artefacts, low QRS amplitude, irregular rhythms, 

and variable beat morphologies. Performance on 

this dry electrode EKG data was evaluated against 

manual peak annotations.

Dry Electrode EKG Data Overview

With the exception of MIT-AF database, PhysioNet 

databases have been independently annotated 

by cardiologists and the performance of HeartKey 

was generated against these annotations. Beat 

annotations for the MIT-AF DB were generated 

by a minimum of two separate annotators using a 

computer-based annotation tool. This was followed 

by a group review of any outstanding annotations, 

during which highlighted discrepancies were 

resolved. Proprietary dry electrode databases 

were manually annotated by board-certified 

cardiologists. Databases were annotated 

individually, followed by a similar group review to 

ensure agreement on annotations for challenging 

signals. As manual annotation is the gold standard 

for EKG performance analysis, these annotations 

were used as a criterion by which the HeartKey 

Signal Conditioning algorithm QRS detection 

performance was compared. 

EKG Data Annotation
Input
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QRS
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Each EKG file was individually processed through 

the HeartKey Signal Conditioning algorithm. QRS 

Detection results were generated using PhysioNet 

WFDB programs bxb and sumstats. As standard 

QRS accuracy measurements employ a wide 

error window (+/- 150 ms), the precise location of 

detection within the QRS complex is not important, 

only that this location remains consistent from 

beat to beat. Looking at this in isolation could 

mask variation in where the algorithm picks up 

the beat. It is therefore beneficial to include HR 

accuracy measurements. Many measurements 

exist for HR, and none are universally accepted. As 

recommended in Section 4.3.3.1 of ANSI EC57, HR 

statistic reference annotation files were created for 

each record, calculating the HR from the reference 

beat annotations with the same method used in 

the device. The comparison will generate the Root 

Mean Square Heart Rate Error to measure the error 

between the reference and test annotations. Heart 

Rate Error statistics are generated using WFDB 

programs mxm and sumstats. 

Data Processing

There are four outcomes in which the detector is presented with an input that is either an event  

or a non-event:

Performance Metrics

*A correctly detected event is defined as a QRS detection location within 150 ms of the QRS annotation, as stated within ANSI 
(AAMI EC67-2012) standards. If QRS detection is outside the 150 ms window, the beat is missed and classified as a false negative.

OUTCOME DESCRIPTION

True Positive (TP) An event detected correctly.*

False-Negative (FN) A missed event.*

False-Positive (FP) A non-event detected as an event.

True Negative (TN) A non-event correctly rejected.
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The most common detector performance measures are sensitivity (Se) and positive predictive 

value (PPV), as detailed below. Sensitivity relates to the ability of the algorithm to identify true 

events correctly and is calculated using the following equation:

PPV relates to the algorithm’s ability to avoid incorrectly detecting false events and is calculated 

using the following equation:

Root Mean Square HR Error is calculated as a percentage figure that allows comparison of the 

HeartKey HR information relative to the reference value:

Performance Metrics: Equations

Se (%) = X 100
TP

TP + FN )))

PPV (%) = X 100
TP

TP + FP )))

RMSE = ∑
N (Actual HR - Annotated HR)2

i=1 N
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Results & Discussion

Numerous algorithms have reported excellent 

performance statistics (>99% QRS Se & PPV) 

on databases for which they have undergone 

a learning period,11-13 or when designed to give 

optimal performance on a given database.14-16 

Without cumbersome training periods, relatively 

few algorithms have been reported to retain a 

high performance across multiple databases with 

different morphologies, cardiac conditions, and 

signal qualities.17-19 HeartKey Signal Conditioning 

and QRS detection algorithms were initially 

evaluated on five PhysioNet databases: NSR DB, 

MIT-BIH DB, AHA DB, MIT-AF DB and NST DB. 

The majority of EKG data in these databases was 

collected using a wet electrode modified limb 

lead II setup. Each database possesses inherent 

challenges for the HeartKey algorithm to overcome, 

outlined in Figure 3. The NSR database contained 

EKG data with high signal quality and no significant 

arrhythmias and was included to demonstrate 

the performance of HeartKey on optimal wet 

electrode EKG data. HeartKey achieved average 

QRS detection Se and PPV of 99.84% and 99.40% 

respectively on this healthy dataset.

HeartKey Performance on Wet Electrode Data 

Figure 3. Overview of data from wet electrode databases.

DATABASE
RECORDING

LENGTH
ANNOTATED 

BEATS
NATURE OF DATA CHALLENGE OF DATABASE

NSR DB
Channel I only 

18 x  

1440 min

1,722,008
Healthy patients with no 

significant arrhythmias
Various beat types

MIT-BIH DB

48 x  

30 min
83,978

Hospital patients 

attending an  

arrhythmia clinic

Variety of rhythms, morphology,  

and signal quality. Including  

complex ventricular, junctional,  

and supraventricular arrhythmias  

and conduction abnormailities

AHA DB

78 x  

30 min
177,317

Mixture of patients  

with arrhythmias  

and normal EKGs

A variety of healthy EKG data,  

cardiac arrhythmias and other 

conditions. Includes PVCs ventricular 

bi- and trigeminy, ventricular 

couplets, PVCs, VT, and VF

MIT-AF DB
23 x  

600 min
1,081,882

Patients diagnosed  

with atrial fibrilation 

Patients diagnosed with atrial  

fibrilation (mostly paroxysmal)

NST DB
12 x  

30 min
21,462

Artificial noise added  

to records 118 and 119  

of the MIT-BIH DB

Challenging EKGs with  

varying signal-to-noise levels

Bittium Faros 180
20 x  

2.5 min
3,256

Proprietary wet  

electrode data collected  

on healthy patients

Gold standard ambulatory  

Holter monitor 
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MIT-BIH is a benchmark database of ambulatory 

EKG recordings containing various arrhythmias 

and cardiac abnormalities. It is by far the 

most frequently used database to validate the 

performance of signal conditioning algorithms in 

the literature.20 For this study, Channel I of each 

recording was analyzed. The 5 minute training 

period at the beginning of each record was also 

excluded from analysis as HeartKey does not 

require a learning phase. The AHA database is 

another popular public EKG database that

contains a range of rhythms, including NSR, 

alongside numerous less common arrhythmias. 

Over the two databases, virtually all significant, 

clinically relevant arrhythmias are covered, ranging 

from mild conditions, such as tachycardia, to life 

threatening heart rhythms like ventricular fibrillation. 

This gives an excellent indication of HeartKey’s 

performance on the wide array of real-world 

clinical EKG data. On both databases, HeartKey 

achieved >99.60% Average QRS PPV. Average QRS 

Se performance values of 98.96% and 97.43% 

were respectively obtained for MIT-BIH and AHA 

databases (Table 1). When considering the clinical 

impact 97% QRS Sensitivity would have in the 

‘worst case’ scenario (at a maximum HR of 200 

bpm), this equates to approximately 2-3 missed or 

extra beats within a 30s recording. 

In relation to arrhythmia detection applications,

this would not be deemed to be clinically 

significant.21 RMS HR error values of 1.09% and 

1.93% were achieved respectively for the MIT-BIH 

and AHA databases.

Although MIT-BIH and AHA databases do contain 

ambulatory EKG records, these datasets are among 

numerous other recording protocols. This means 

that the average QRS detection statistics are not 

truly representative of HeartKey performance on 

ambulatory data, which can be considerably more 

challenging due to inherent noise contamination 

through patient movement.

To demonstrate the utility of HeartKey on 

ambulatory wet electrode EKG data, the MIT-AF 

database, which contains long term, continuous 

EKG data from patients diagnosed with atrial 

fibrillation (AF), was next analyzed. HeartKey 

achieved Average QRS Se of 99.38% and QRS PPV 

of 97.37% on this ambulatory dataset. To further 

highlight the high performance of HeartKey on 

Holter wet electrode data, a proprietary dataset 

was collected on healthy subjects using a Bittium 

Faros 180, a gold standard ambulatory recording 

device. Similar performance statistics were 

achieved on this dataset with an average QRS Se 

and PPV of 99.86% and 99.66%.

Table 1. Performance of HeartKey on wet electrode databases.

MEASUREMENTS
NSR 

DB

MIT‑BIH  

DB

AHA  

DB

MIT‑AF  

DB

NST  

DB

BITTIUM  

FAROS 180

Detected Beats 1,719,427 82,996 173,117 1,075,071 20,000 3,521

False Positives 10,134 111 618 28,315 2,141 12

False Negatives 2581 982 4200 6,811 1,462 5

QRS Average Sensitivity 99.84 98.96 97.43 99.38 93.26 99.86

QRS Average PPV 99.40 99.86 99.60 97.37 90.53 99.66

RMS HR Error (%) 1.09 1.93 5.42 3.21 19.42 0.61



B-SECUR

14

The ability of HeartKey to successfully detect the 

QRS complex amidst various levels of noise was 

pushed to its limit using the Noise Stress Test (NST) 

database. In this public dataset, artificial noise 

is overlayed on two clean EKG signals from the 

MIT-BIH database (records 118 and 119), to emulate 

baseline wander, muscle movement artefacts and 

electrode motion artefacts. HeartKey achieved a 

QRS Se of 93.26% and PPV of 90.53% on the NST-

DB. Performance metrics for the NST DB, detailed 

in table 1, are understandably lower than the other 

four PhysioNet databases, however, HeartKey still 

performed well even with the extreme presence 

of noise. Individual records from the NST database 

were analyzed to determine the level of noise at 

which the performance of the algorithm becomes 

affected. Average QRS Se and PPV performance 

values remain above 99% for SNR levels as low 

as 12 dB. At an SNR of 6 dB (118e06 + 119e06), the 

average Se and PPV reduce to 98.26% and 95.18% 

respectively. At 0 dB and -6 dB, the performance 

deteriorates markedly when noise becomes equal 

to or greater than the EKG signal. 

Wearable devices with EKG functionality are 

emerging as powerful tools to detect and remotely 

monitor cardiac abnormalities outside of a clinical 

environment.21 Such devices typically measure the 

heart’s electrical signal using a dry electrode single 

lead EKG setup. 

However, data collection on dry electrode EKG 

wearables is inherently more challenging for two 

reasons: the positioning of the wearable device 

at peripheral locations on the body, such as the 

wrist or hands, can lead to a reduction in signal 

amplitude, whereas the increased impedance 

given by dry electrodes leads to enhanced noise 

interference. Prior to an effective signal processing 

step, the combined issues produce data in which 

the relevant EKG waveforms are buried under 

noise. The lack of redundancy in single lead EKG 

set-ups further stresses the need for accurate and 

reliable signal processing algorithms to extract the 

maximum amount of diagnostic information from 

challenging EKG traces.

To demonstrate the broad applicability of HeartKey 

Signal Conditioning and QRS Detection algorithms, 

EKG data was collected on a range of dry electrode 

devices. The collected datasets contain various 

challenging single-lead EKG signals, including 

those with high frequency noise, motion artefacts, 

low QRS amplitude, irregular beats, and irregular 

rhythms to represent real-world dry electrode data 

as closely as possible (Figure 4). 

HeartKey QRS detection algorithm displayed strong 

performance on the range of dry electrode use 

cases, with an average QRS Se and PPV of 99.13% 

and 99.00% over the six tested databases (Table 

2). The highest QRS detection performance was 

observed with the chest module, with an average 

QRS Se of 99.95% and PPV of 99.94%. This is 

unsurprising as the large dry electrode surface

area ensures continuous contact with the skin. 

As the device is securely strapped in place, there 

is also less electrode-skin contact movement and 

therefore fewer noise artefacts. The proximity of 

the device to the heart also allows a high amplitude 

QRS to be recorded. This hardware is a stark 

contrast to prototype wristwatches 1 and 2, which 

feature dry electrodes with smaller surface areas 

located at a peripheral site on the body (wrist), 

resulting in a low amplitude EKG that is more prone 

to noise contamination.  Despite these challenges, 

HeartKey achieved QRS Se (>99.54%) and PPV 

(>98.29%) on both tested prototype wristwatches. 

The steering wheel similarly suffers due to the 

proximal location of its data collection

(hands/fingers) and as subjects are required to 

grip the wheel in an unsecured manner, there 

is inevitable noise contamination from muscle 

contractions and the moving electrode-skin 

interface. Average QRS Se and PPV values of 

99.29% and 99.07% were achieved despite

these difficulties. The most challenging dry 
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electrode datasets in Table 2 are arguably

those collected with the handheld EKG device

(Entries 1 & 2). The electrode-skin contact site for 

these use cases is at the extremity of the body 

(fingertips), resulting in a low EKG amplitude. 

To add further difficulty, the datasets were also 

collected on unhealthy patients and contain various 

arrhythmias and ectopic beats. HeartKey achieved 

QRS Se of 97.98% and 98.14% and QRS PPV of 

99.30% and 98.65% on handheld EKG device 

entries 1 & 2 respectively.  

HARDWARE
DETECTED 

BEATS

FALSE 

POSITIVES 

FALSE 

NEGATIVES

QRS AVERAGE 

SENSITIVITY (%)

QRS AVERAGE 

PPV (%)

RMS HR  

ERROR (%)

Chest Module 4,869 3 2 99.95 99.94 0.63

Wristwatch Prototype 1 978 22 5 99.54 98.29 0.98

Wristwatch Prototype 2 821 13 1 99.87 98.63 1.23

Steering Wheel 1,836 16 12 99.29 99.07 1.86

Handheld EKG Entry 1 1,522 7 217 97.98 99.30 2.00

Handheld EKG Entry 2 6,628 115 111 98.14 98.65 2.57

Table 2. Performance of HeartKey on dry electrode databases.

HARDWARE
LEAD

SETUP
SUBJECT

TYPE
RECORDING

LENGTH
ANNOTATED 

BEATS
OVERVIEW AIMS

Chest  
Module

MCLI + 

Lead I
Healthy 12 x 1 min 4,871

Stress-inducing protocol
including mental arithmetic
and presentation tasks

Perfromance during stress  
tests at variable heart rates

Wristwatch 
Prototype 1

Lead I Healthy 15 x 1 min 983
Stationary recording on 
wearable prototype 
wristwatches

Perfromance on data from low 
EKG amplitude wristwatches

Wristwatch 
Prototype 2

Lead I Healthy 15 x 1 min 822

Steering  
Wheel

Lead I Healthy 31 x 1 min 1,848
Stationary recording on
steering wheel electrodes 
wristwatches 

Perfromance on lower quality  
dry electrode collection device

Handheld  
EKG Entry 1

Lead I Unhealthy
55 x  

30-60 s
1,549

Stationary recording of 
patients with tachycardia,
bradycardia, atrial fibrillation 

Perfromance on dry electrode 
data containing arrhythmias

Handheld  
EKG Entry 2

Lead I Unhealthy
214 x  

30-60 s
6,739 Stationary recording of 

patients with ectopic beats
Perfromance on dry electrode 
data containing ectopic beats

Figure 4. Overview of data from dry electrode databases.

HeartKey Performance on Dry Electrode Data
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Diagnosing intermittent cardiac arrhythmias is a 

challenge. These arrhythmic episodes can occur 

infrequently and unpredictably, and they generally 

require prolonged and repeated cardiac monitoring 

to be successfully detected.22 Performing this 

requires the development of reliable and clinically 

safe ambulatory monitoring methods. To maximize 

patient compliance and obtain real-world EKG data, 

the chosen hardware device needs to be discreet, 

lightweight, and unobtrusive so the patient can 

continue as close to as possible an uninterrupted 

daily life routine. However, this requirement needs 

to be balanced against maximizing data quality 

to ensure that false positives and negatives are 

eliminated as much as possible. 

Wearable dry electrode EKG setups are ideal for 

discreetness and allow patients to maintain regular 

daily routines. For the EKG functionality within 

the wearable device to be of clinical value, the 

algorithms must be capable of maintaining a high 

performance across the spectrum of motion-based 

scenarios the patient will enact each day — such 

as walking or exercising — which will invariably alter 

EKG signal quality. 

The performance of HeartKey algorithms was 

investigated on internally collected EKG data 

recorded on consumer-grade chest strap 

electrodes (MCLI) during two motion-based 

protocols (Table 3). In the first, subjects were 

instructed to walk on a treadmill (6 km/h) for 4 

minutes. In the second protocol, after an initial 

warm up period, subjects were asked to run on a 

treadmill at increasing speeds (subject dependent) 

over 4 minutes. As expected, the raw EKGs are 

of poor quality, suffer from frequent baseline 

wander, and contain large amounts of noise 

artefacts arising from dry electrode-skin contact 

movement and patient muscle activity. HeartKey 

signal processing and QRS detection algorithms 

performed well on these challenging datasets, 

achieving Average QRS Se and PPV of 99.09% and 

98.15% during the walking protocol (Entry 1), and a 

QRS Se and PPV of 99.86% and 99.87% during the 

running protocol. 

HeartKey Performance on Motion Based
Dry Electrode Data 

HARDWARE
ELECTRODE 

SETUP

PROTOCOL  

OVERVIEW

RECORDING 

LENGTH

ANNOTATED  

BEATS

QRS AVERAGE 

SENSITIVITY  

(%)

QRS  

AVERAGE  

PPV (%)

RMS HR 

ERROR  

(%)

Chest Module 
Entry 1

Dry MCLI  
+ Lead I

Walking on  
a treadmill at  
increasing speeds

21 x  
4 min

8,858 99.09 98.15 1.56

Chest Module 
Entry 2

Dry MCLI  
+ Lead I

Running on  
a treadmill at 
increasing speeds

189 x  
1 min

19,793 99.86 99.87 0.48

Table 3. Performance of HeartKey during motion-based EKG recording protocols.
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Although the performance was expected to lower 

during the running protocol due to the increased 

levels of motion, the opposite was observed. The 

buildup of sweat at the electrode-skin interface 

during the running protocol could explain the 

results, as this would lead to greater conductance, 

essentially allowing it to act as a wet electrode. 

HeartKey’s ability to improve the quality of dry 

electrode EKG data without interrupting the 

patient’s daily routine will facilitate clinical-grade 

ambulatory monitoring, hugely enhancing the 

breadth and depth of available diagnostic hardware 

and improving their performance both in and out of 

hospital settings. 

The ability of EKG signal conditioning algorithms 

to achieve relatively high performance on wet 

electrode databases for which they have been 

optimized or trained is not uncommon. However, 

most EKG signal conditioning algorithms lack 

universality and are incapable of maintaining the 

same high level of performance over multiple 

databases and use cases, limiting their application. 

We have shown that HeartKey is a crucial tool 

in pursuing a universal approach to EKG signal 

conditioning, showing accurate and reliable QRS 

detection performance across a broad range 

of clinically relevant datasets. It should again be 

emphasized that HeartKey algorithms require no 

learning phases, and in no way have been adjusted 

to perform better on the tested databases. 

As with many clinical EKGs, the data is there, but 

the signal can be of poor quality and hidden under 

a range of noise. Prior to the development of high-

quality signal conditioning, this data was lost or not 

actionable. Patients and clinicians could go through 

multiple repeated investigations, extended periods 

of monitoring or, in some cases, the condition could 

be overlooked until a more catastrophic cardiac 

event occurs. Effective signal conditioning with 

HeartKey allows clinicians to extract the right data, 

making the crucial intervention without repeated 

investigations.

Conclusion
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